Синус (sin x) и косинус (cos x) – свойства, графики, формулы. Теорема косинусов

Синус (sin x) и косинус (cos x) – свойства, графики, формулы. Теорема косинусов

Теорема косинусов является обобщением теоремы Пифагора для произвольного треугольника.

Формулировка теоремы косинусов

Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:



Полезные формулы теоремы косинусов:

Как видно из указанного выше, с помощью теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.

Доказательство теоремы косинусов

Рассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)

Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD.
Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что
AB = AD + BD

Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b ) и угол (α ) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике:

AD / AC = cos α
откуда
AD = AC cos α
AD = b cos α

Длину стороны BD найдем как разность AB и AD:
BD = AB - AD
BD = c − b cos α

Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
для треугольника BDC
CD 2 + BD 2 = BC 2
для треугольника ADC
CD 2 + AD 2 = AC 2

Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую.
CD 2 = BC 2 - BD 2
CD 2 = AC 2 - AD 2

Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений:
BC 2 - BD 2 = AC 2 - AD 2

Исходя из сделанных ранее вычислений, мы уже знаем что:
AD = b cos α
BD = c − b cos α
AC = b (по условию)

А значение стороны BC обозначим как a .
BC = a
(Именно его нам и нужно найти)

BC 2 - BD 2 = AC 2 - AD 2
Заменим буквенные обозначения сторон на результаты наших вычислений
a 2 - ( c − b cos α ) 2 = b 2 - (b cos α ) 2
перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую
a 2 = (c − b cos α ) 2 + b 2 - (b cos α ) 2
раскроем скобки
a 2 = b 2 + c 2 - 2c b cos α + (b cos α ) 2 - (b cos α ) 2
получаем
a 2 = b 2 + c 2 - 2bc cos α

Теорема косинусов доказана.

Что же такое теорема косинусов? Представь себе, это такая… теорема Пифагора для произвольного треугольника.

Теорема косинусов: формулировка.

Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

А теперь объясняю почему так и причем тут теорема Пифагор.

Ведь что утверждает теорема Пифагора?

А что будет, если, скажем, острый?

А если - тупой?

Вот сейчас и выясним, точнее, сперва сформулируем, а потом докажем.

Итак, для всякого (и остроугольного, и тупоугольного и даже прямоугольного!) треугольника верна теорема косинусов.

Теорема косинусов:

Что такое и?

можно выразить из треугольника (прямоугольного!) .

А вот (снова из).

Подставляем:

Раскрываем:

Пользуемся тем, что и… всё!

2 Случай: пусть.

Итак, то есть тупой.

А теперь, внимание, отличие!

Это из, который теперь оказался снаружи, а

Вспоминаем, что

(читай тему , если совсем забыл, почему так).

Значит, - и все! Отличие закончилось!

Как и было, то есть:

Ну и остался последний случай.

3 Случай: пусть.

Итак, . Но тогда и теорема косинусов просто превращается в теорему Пифагора:

В каких же задачах бывает полезна теорема косинусов?

Ну, например, если у тебя даны две стороны треугольника и угол между ними , то ты прямо сразу можешь найти третью сторону .

Или, если тебе даны все три стороны , то ты тут же найдешь косинус любого угла по формуле

И даже, если тебе даны две стороны и угол НЕ между ними , то третью сторону тоже можно найти, решая квадратное уравнение. Правда, в этом случае получается иногда два ответа и нужно соображать, какой же из них выбрать, или оставить оба.

Попробуй применять и не бояться - теорема косинусов почти также легка в обращении, как и теорема Пифагора.

ТЕОРЕМА КОСИНУСОВ. КОРОТКО О ГЛАВНОМ

Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора .

Теорема косинусов:

Для плоского треугольника , у которого стороны a , b , c и угол α , который противолежит стороне a , справедливо соотношение:

a 2 = b 2 + c 2 - 2 bc cosα .

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

Если конкретно:

  • Когда b 2 + c 2 - a 2 > 0 , угол α будет острым;
  • Когда b 2 + c 2 - a 2 = 0 , угол α будет прямым (когда угол α является прямым, значит, теорема косинусов переходит в теорему Пифагора);
  • Когда b 2 + c 2 - a 2 < 0 , угол α будет тупым.

Классическое доказательство теоремы косинусов.

Пусть есть треугольник ABC . Из вершины C на сторону AB опустили высоту CD . Значит:

AD = b cos α,

DB = c - b cos α

Записываем теорему Пифагора для 2-х прямоугольных треугольников ADC и BDC :

h 2 = b 2 - (b cos α) 2 (1)

h 2 = a 2 - (c - b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 - (b cos α) 2 = a 2 - (c - b cos α) 2

a 2 = b 2 + c 2 - 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c :

b 2 = a 2 + c 2 - 2ac cos β

c 2 = a 2 + b 2 - 2ab cos γ.

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Не все школьники, а тем более взрослые, знают, что теорема косинусов напрямую связана с теоремой Пифагора. Точнее сказать, последняя является частным случаем первой. Этот момент, а также два способа доказательства теоремы косинусов помогут стать более знающим человеком. К тому же практика в выражении величин из исходных выражений хорошо развивает логическое мышление. Длинная формула изучаемой теоремы обязательно заставит потрудиться и посовершенствоваться.

Начало разговора: введение обозначений

Эта теорема формулируется и доказывается для произвольного треугольника. Поэтому ею можно воспользоваться всегда, в любой ситуации, если даны две стороны, а в некоторых случаях три, и угол, причем необязательно между ними. Каким бы ни был вид треугольника, теорема сработает всегда.

А теперь про обозначение величин во всех выражениях. Лучше сразу договориться, чтобы потом несколько раз не пояснять. Для этого составлена следующая таблица.

Формулировка и математическая запись

Итак, формулируется теорема косинусов следующим образом:

Квадрат стороны любого треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих же сторон на косинус угла, лежащего между ними.

Конечно, оно длинное, но если понять его суть, то запомнить будет просто. Можно даже представлять себе чертеж треугольника. Наглядно всегда проще запоминать.

Формула же этой теоремы будет выглядеть так:

Немного длинно, но все логично. Если немного внимательнее посмотреть, то можно увидеть, что буквы повторяются, значит, и запомнить ее несложно.

Распространенное доказательство теоремы

Поскольку она справедлива для всех треугольников, то можно выбрать для рассуждений любой из видов. Пусть это будет фигура со всеми острыми углами. Рассмотрим произвольный остроугольный треугольник, у которого угол С больше, чем угол В. Из вершины с этим большим углом нужно опустить перпендикуляр на противоположную сторону. Проведенная высота разделит треугольник на два прямоугольных. Это потребуется для доказательства.

Сторона окажется разделенной на два отрезка: х, у. Их нужно выразить через известные величины. Та часть, которая окажется в треугольнике с гипотенузой, равной в, выразится через запись:

х = в * cos А.

Другая будет равна такой разности:

у = с - в * cos А.

Теперь нужно записать теорему Пифагора для двух получившихся в результате построения прямоугольных треугольников, принимая за неизвестную величину высоту. Эти формулы будут выглядеть так:

н 2 = в 2 - (в * cos А) 2 ,

н 2 = а 2 - (с - в * cos А) 2 .

В этих равенствах стоят одинаковые выражения слева. Значит, их правые части тоже будут равны. Это просто записать. Теперь нужно раскрыть скобки:

в 2 - в 2 * (cos А) 2 = а 2 - с 2 + 2 с * в * cos А - в 2 * (cos А) 2 .

Если здесь выполнить перенос и приведение подобных слагаемых, то получится начальная формула, которая записана после формулировки, то есть теорема косинусов. Доказательство закончено.

Доказательство теоремы через векторы

Оно гораздо короче предыдущего. И если знать свойства векторов, то теорема косинусов для треугольника будет доказана просто.

Если стороны а, в, с обозначить соответственно векторами ВС, АС и АВ, то справедливо равенство:

ВС = АС - АВ.

Теперь нужно выполнить некоторые действия. Первое из них — это возведение в квадрат обеих частей равенства:

ВС 2 = АС 2 + АВ 2 - 2 АС * АВ.

Потом равенство нужно переписать в скалярном виде, учитывая то, что произведение векторов равно косинусу угла между ними на их скалярные значения:

ВС 2 = АС 2 + АВ 2 - 2 АС * АВ * cos А.

Осталось только вернуться к старым обозначениям, и снова получится теорема косинусов:

а 2 = в 2 + с 2 - 2 * в * с * cos А.

Формулы для других сторон и всех углов

Чтобы найти сторону, из теоремы косинусов нужно извлечь квадратный корень. Формула для квадратов одной из других сторон будет выглядеть так:

с 2 = а 2 + в 2 - 2 * а * в * cos C.

Чтобы записать выражение для квадрата стороны в , нужно в предыдущем равенстве заменить с на в , и наоборот, и под косинусом поставить угол В.

Из основной формулы теоремы можно выразить значение косинуса угла А:

cos А = (в 2 + с 2 - а 2) / (2 в * с).

Аналогично выводятся формулы для других углов. Это хорошая практика, поэтому можно попробовать написать их самостоятельно.

Естественно, что запоминать эти формулы нет необходимости. Достаточно понимания теоремы и умения вывести эти выражения из ее основной записи.

Исходная формула теоремы дает возможность найти сторону, если угол лежит не между двумя известными. К примеру, нужно найти в , когда даны величины: а, с, А . Или неизвестна с , зато есть значения а, в, А .

В этой ситуации нужно перенести все слагаемые формулы в левую сторону. Получится такое равенство:

с 2 - 2 * в * с * cos А + в 2 - а 2 = 0.

Перепишем его немного в другом виде:

с 2 - (2 * в * cos А) * с + (в 2 - а 2) = 0.

Можно легко увидеть квадратное уравнение. В нем неизвестная величина - с , а все остальные даны. Поэтому его достаточно решить с помощью дискриминанта. Так будет найдена неизвестная сторона.

Аналогично получается формула для второй стороны:

в 2 - (2 * с * cos А) * в + (с 2 - а 2) = 0.

Из других выражений такие формулы тоже легко получить самостоятельно.

Как без вычисления косинуса узнать вид угла?

Если внимательно посмотреть на формулу косинуса угла, выведенную ранее, то можно заметить следующее:

  • знаменатель дроби - всегда положительное число, потому что в нем стоит произведение сторон, которые не могут быть отрицательными;
  • значение угла будет зависеть от знака числителя.

Угол А будет:

  • острым в ситуации, когда числитель больше нуля;
  • тупым, если это выражение отрицательное;
  • прямым при его равенстве нулю.

Кстати, последняя ситуация обращает теорему косинусов в теорему Пифагора. Потому что для угла в 90º его косинус равен нулю, и последнее слагаемое исчезает.

Первая задача

Условие

Тупой угол некоторого произвольного треугольника равен 120º. О сторонах, которыми он ограничен, известно, что одна из них больше другой на 8 см. Известна длина третьей стороны, это 28 см. Требуется найти периметр треугольника.

Решение

Сначала нужно обозначить одну из сторон буквой «х». В таком случае другая будет равна (х + 8). Поскольку есть выражения для всех трех сторон, можно воспользоваться формулой, которую дает теорема косинусов:

28 2 = (х + 8) 2 + х 2 - 2 * (х + 8) * х * cos 120º.

В таблицах для косинусов нужно найти значение, соответствующее 120 градусам. Это будет число 0,5 со знаком минус. Теперь полагается раскрыть скобки, соблюдая все правила, и привести подобные слагаемые:

784 = х 2 + 16х + 64 + х 2 - 2х * (-0,5) * (х + 8);

784 = 2х 2 + 16х + 64 + х 2 + 8х;

3х 2 + 24х - 720 = 0.

Это квадратное уравнение решается через нахождение дискриминанта, который будет равен:

Д = 24 2 - 4 * 3 * (- 720) = 9216.

Поскольку его значение больше нуля, то уравнение имеет два ответа-корня.

х 1 = ((-24) + √(9216)) / (2 * 3) = 12;

х 2 = ((-24) - √(9216)) / (2 * 3) = -20.

Последний корень не может быть ответом задачи, потому что сторона обязательно должна быть положительной.



Понравилась статья? Поделитесь с друзьями!